
Introduction to Javascript
David Li

Vol 1

Introduction to Javascript
David Li

Vol 1

Copyright © David Li.

God made the integers; all else is the work

of man.

Leopold Kronecker.

Contents

1 Introduction to Javascript 1

1.1 History of Javascript . 2

1.1.1 Why use Javascript . 3

1.1.2 Getting started with Javascript . 5

1.1.3 Getting started with Node.js . 6

1.2 Javascript Fundamentals . 7

1.2.1 Javascript Objects . 9

1.2.2 Arrays in Javascript . 11

1.2.3 Control Flow in Javascript . 16

1.2.4 Truthy and Falsy values . 22

1.3 HTML and CSS . 24

1.3.1 CSS . 27

1.4 Mixing Javascript with HTML . 32

1.5 Logging in Javascript . 33

vi

CONTENTS vii

2 Asynchronous Programming 39

2.1 Introduction to Promises . 40

2.2 Http Requests . 42

2.2.1 Using Fetch . 45

2.3 Other ways to use fetch . 48

2.3.1 Introduction to caching . 49

3 Node 52

3.1 Package Managers . 55

3.1.1 What is a package.json file . 56

3.2 Express . 57

3.3 Docker . 61

4 Solutions to Excerises 65

1

1.1. HISTORY OF JAVASCRIPT 2

1. Introduction to
Javascript

Any application that can be written

in JavaScript will eventually be

written in JavaScript. — Jeff Atwood

1.1 History of Javascript

JavaScript is a programming language that is commonly used to add interactive

elements to websites. It is a client-side language, which means that it is executed

by the user’s web browser rather than on the server. JavaScript allows developers to

create dynamic and interactive user experiences, such as changing the content of a

web page without reloading the page, validating form input, and creating animations

and games. It is commonly used in combination with HTML and CSS to create

websites and web applications.

The full history of JavaScript is as follows:

1. 1995: JavaScript was developed by Netscape Communications Corporation as

a programming language for web browsers. It was initially named LiveScript,

1.1. HISTORY OF JAVASCRIPT 3

but was later renamed to JavaScript to capitalize on the popularity of the Java

programming language.

2. 1996: Microsoft released its own version of JavaScript, called JScript, for its

Internet Explorer web browser.

3. 1997: JavaScript was standardized by ECMA International, an industry or-

ganization for standardizing information and communication systems, as EC-

MAScript.

4. 1999: ECMAScript 3, the first widely-supported version of JavaScript, was

released.

5. 2005: ECMAScript 5, which added many new features to JavaScript, was

released.

6. 2009: ECMAScript 5.1, which was a minor update to ECMAScript 5, was

released.

7. 2015: ECMAScript 6 (also known as ECMAScript 2015), which added many

new features and improvements to JavaScript, was released.

Today, JavaScript continues to be a popular and widely-used programming language

for web development.

1.1.1 Why use Javascript

There are several advantages of using JavaScript for full stack development:

1. Flexibility: JavaScript is a versatile language that can be used for both front-

end and back-end development, allowing for a seamless development process

and a cohesive codebase.

1.1. HISTORY OF JAVASCRIPT 4

2. Popularity: JavaScript is one of the most popular programming languages,

with a large and active community of developers who constantly contribute

new tools and libraries to improve the language.

3. Ease of use: JavaScript is a relatively easy language to learn, even for those

with little to no programming experience. This makes it a great choice for

developers who want to learn how to build full stack applications.

4. Speed: JavaScript is a fast language that can execute code quickly, allowing

for faster development and better performance in web applications.

5. Compatibility: JavaScript is supported by all major web browsers, so web

applications built with JavaScript will be compatible with a wide range of

devices and platforms.

6. Rich ecosystem: JavaScript has a rich ecosystem of frameworks, libraries, and

tools that make it easier to build and maintain full stack applications. This

includes popular frameworks such as React, Angular, and Vue.js for the front-

end, and Node.js for the back-end.

JavaScript is a very popular and widely-used programming language, so knowing

JavaScript is a valuable skill for a software developer to have. JavaScript is often

used for building web applications and creating interactive user experiences on the

front end (i.e., the client-side) of a web application.

In addition to being used for front-end web development, JavaScript is also commonly

used for server-side development using runtime environments like Node.js. This

allows JavaScript to be used for full-stack development, which can be beneficial for

developers who want to be able to work on both the front-end and back-end of a

web application.

1.1. HISTORY OF JAVASCRIPT 5

Overall, knowing JavaScript can be very useful for a software developer, and it is a

skill that is in high demand in the job market. However, the importance of any par-

ticular language or technology can vary depending on the specific job and industry,

so it’s always a good idea to keep up with the latest trends and developments in

the field.

1.1.2 Getting started with Javascript

JavaScript is a client-side language, which means that it is executed by the user’s

web browser rather than on the server. Therefore, there is no need to install

JavaScript on your computer.

To use JavaScript in a web page, you simply need to include the JavaScript code in

the HTML code of the page. This can be done by adding a <script> tag in the <head>

or <body> section of the HTML code, and then placing the JavaScript code inside the

<script> tag. For example:

<script >

// JavaScript code goes here

</script >

Listing 1.1: sample script tag

Alternatively, you can also include a reference to a separate JavaScript file in the

<head> or <body> section of the HTML code using the src attribute of the <script>

tag. For example:

<script src="script.js"></script>

This will include the JavaScript code from the script.js file in the web page.

To test your JavaScript code, you can simply open the web page in a web browser

and use the browser’s developer tools to view the output of the code. Most modern

1.1. HISTORY OF JAVASCRIPT 6

web browsers, such as Google Chrome and Mozilla Firefox, have developer tools

built-in that allow you to view and debug your JavaScript code.

What is HTML

1.1.3 Getting started with Node.js

is an open-source, cross-platform, runtime environment that allows you to execute

JavaScript code outside of a browser. It provides a rich set of built-in modules

that simplify the development of web applications, and it has a large and active

community of users who contribute additional modules to the npm (Node Package

Manager) repository.

is often used to build server-side applications, but it can also be used for command-

line tools, desktop applications, and more. It is based on the JavaScript V8 engine,

which is the same engine used in the Google Chrome web browser, and it allows

you to write code in JavaScript that can access the full range of system-level APIs

and libraries.

One of the key advantages of Node.js is its event-driven, non-blocking I/O model,

which makes it highly scalable and efficient. This makes it well-suited for building

real-time, data-intensive applications that can handle large numbers of concurrent

connections [3].

Overall, is a powerful and versatile tool that can be used for a wide range of

applications. For details on how to install node view chapter 3 on page 53

1.2. JAVASCRIPT FUNDAMENTALS 7

1.2 Javascript Fundamentals

There are several fundamental concepts in JavaScript that are important for a be-

ginner to understand. These include:

1. Variables: Variables are containers for storing data values. In JavaScript, you

use the var keyword to declare a variable and assign it a value using the =

operator. For example:

var x = 5;

2. Data types: JavaScript has several data types that can be used to represent

different types of data. These include numbers, strings (text), booleans (true/-

false values), arrays, and objects. The type of a variable is determined by the

data it holds.

3. Operators: Operators are used to perform operations on data values. For

example, the + operator is used to add two numbers together, while the ===

operator is used to check if two values are equal.

4. Functions: Functions are blocks of code that can be called from other parts of

your program. In JavaScript, you define a function using the function keyword,

followed by the function name and a set of parentheses that may contain

parameters. For example:

function sayHello (name) {

console .log("Hello , " + name);

}

Listing 1.2: sample function

1.2. JAVASCRIPT FUNDAMENTALS 8

5. Control flow: Control flow refers to the order in which the statements in a

program are executed. JavaScript uses conditional statements (e.g., if, else,

switch) and loops (e.g., for, while) to control the flow of a program.

6. Objects: As mentioned earlier, objects are collections of properties that have

values of various data types. In JavaScript, you can create your own objects

and add, remove, or modify their properties.

In JavaScript, , , and are three different ways to declare variables.

var is the traditional way to declare variables in JavaScript. It has been around

since the early days of the language and is still used in many programs. The main

disadvantage of using var is that it is function-scoped, which means that a variable

declared with var inside a function is accessible outside of that function. This can

lead to unexpected behavior and can make it difficult to understand and debug your

code.

is a newer way to declare variables in JavaScript. It was introduced in the ES6

(ECMAScript 6) version of the language and is now the recommended way to de-

clare variables in most cases. let is block-scoped, which means that a variable

declared with let inside a block of code (e.g. inside a for loop or an if statement)

is only accessible within that block. This makes let more predictable and easier to

understand than var.

is also a new way to declare variables in JavaScript. It was also introduced in ES6

and is similar to let, but with one key difference: a variable declared with const

cannot be reassigned. In other words, once you assign a value to a const variable,

you cannot change that value later on. This makes const a good choice for variables

that you don’t want to change, such as constant values or configuration settings.

In summary, var is the traditional way to declare variables in JavaScript, but it has

1.2. JAVASCRIPT FUNDAMENTALS 9

some limitations and can lead to unpredictable behavior. let and const are newer

ways to declare variables that are more predictable and easier to understand. In

most cases, it is recommended to use let unless you have a specific reason to use

var or .

These are just a few of the fundamental concepts in JavaScript. To learn more, I

would recommend reading some tutorials available at mdn [1].

1.2.1 Javascript Objects

In JavaScript, an object is a collection of properties, and a property is an association

between a name (or key) and a value. A property’s value can be a function, in which

case the property is known as a method. In addition to objects that are predefined

in the browser, you can define your own objects.

Here is an example of a simple object:

var person = {

firstName : "John",

lastName : "Doe",

age: 50,

eyeColor : "blue"

};

In this example, person is an object that has four properties: firstName, lastName,

age, and eyeColor. The values of these properties are "John", "Doe", 50, and "blue",

respectively.

You can access an object’s properties in two ways: using dot notation (e.g., per-

son.firstName) or bracket notation (e.g., person["firstName"]). In general, dot notation

is preferred, but if the property name contains spaces or other special characters,

you must use bracket notation.

1.2. JAVASCRIPT FUNDAMENTALS 10

To use JavaScript objects, you can declare a variable and set it equal to a new object

using curly braces. For example:

1 var myObject = {};

To add properties to the object, you can use the dot notation or the bracket notation.

For example:

// Dot notation

myObject .name = "John Doe";

myObject .age = 30;

// Bracket notation

myObject [" gender "] = "male";

Listing 1.3: Dot notiation in javascript

To access the properties of an object, you can use the same dot notation or bracket

notation. For example:

console .log(myObject .name); // Output : "John Doe"

console .log(myObject ["age"]); // Output : 30

You can also use the for...in loop to iterate over the properties of an object and access

their values. For example:

for (var key in myObject) {

console .log(key + ": " + myObject [key]);

}

// Output :

// name: John Doe

// age: 30

// gender : male

1.2. JAVASCRIPT FUNDAMENTALS 11

Additionally, you can use the Object.keys() method to get an array of the keys in

an object, and the Object.values() method to get an array of the values in an object.

For example:

1 console .log(Object .keys(myObject)); // Output : [" name", "age", "

gender "]

2 console .log(Object . values (myObject)); // Output : [" John Doe", 30, "

male "]

JavaScript objects are a useful data structure for storing and organizing data, and

are commonly used in web development.

1.2.2 Arrays in Javascript

What is an array? An array is a data structure that allows you to store a collection

of elements in a single variable. This can be useful in many situations, such as when

you want to store a list of items or when you need to store data in a structured

manner.

Here are some reasons why you might want to use an array in your code:

To store a list of items: An array is a convenient way to store a list of similar items.

For example, you could use an array to store a list of names, a list of numbers, or

a list of other objects.

To access items by index: Arrays are indexed, which means that you can access

each element in the array using a numerical index. This makes it easy to retrieve

specific items from the array, or to loop through all of the items in the array.

To sort items: Arrays have built-in methods for sorting the items they contain. This

can be useful if you need to sort a list of items alphabetically or numerically.

To manipulate items: Arrays also have methods for adding, removing, and modifying

the items they contain. This makes it easy to manipulate the items in the array

1.2. JAVASCRIPT FUNDAMENTALS 12

without having to write your own code to do so.

Overall, arrays are a versatile data structure that can be useful in many situations

where you need to store and manipulate data. If you find yourself needing to store

and manage a collection of items, an array may be the right choice for your needs.

Properties of arrays in Javascript One of the unique aspects of JavaScript arrays

is that they can store elements of different data types. In many programming lan-

guages, arrays are limited to storing elements of a single data type, but in JavaScript,

an array can contain elements of any type.

For example, the following code creates an array that contains a number, a string,

and a boolean value:

1 var array =[4, "test", false]

One key difference between arrays in JavaScript and other programming languages

is that JavaScript arrays are dynamic, which means that they can grow or shrink

in size as needed. This is in contrast to arrays in languages like C or Java, which

have a fixed size and must be explicitly resized if the number of elements exceeds

the size of the array.

Below is an example highlighting what you can do with arrays in javascript.

Some of the most commonly used functions of arrays in JavaScript include the fol-

lowing:

• push(): Adds one or more elements to the end of an array.

• pop(): Removes the last element from an array and returns it.

• shift(): Removes the first element from an array and returns it.

• unshift(): Adds one or more elements to the beginning of an array.

1.2. JAVASCRIPT FUNDAMENTALS 13

• indexOf(): Returns the index of the first occurrence of a given element in an

array, or -1 if the element is not present in the array.

• join(): Joins all elements of an array into a string and returns the resulting

string.

• slice(): Extracts a portion of an array and returns a new array.

• splice(): Removes elements from an array and/or adds new elements to an

array.

• sort(): Sorts the elements of an array in ascending or descending order.

These are just a few examples of the many functions available for working with

arrays in JavaScript. Other commonly used array functions include map(), filter(),

reduce(), forEach(), and many more. The specific functions you use will depend on

your specific needs and the tasks you are trying to accomplish with your arrays.

1 Here is an example of using an array in javascript :

2

3 // Declare an array with 3 elements

4 var myArray = [1, 2, 3];

5

6 // Output the first element in the array

7 console .log(myArray [0]); // Output : 1

8

9 // Add a new element to the end of the array

10 myArray .push (4);

11

12 // Output the length of the array

13 console .log(myArray . length); // Output : 4

14

1.2. JAVASCRIPT FUNDAMENTALS 14

15 // Use the slice () method to create a new array with the last two

elements of the original array

16 var lastTwo = myArray .slice(myArray .length -2);

17

18 // Output the new array

19 console .log(lastTwo); // Output : [3, 4]

20

21 // Use the map () method to create a new array with the square of

each element in the original array

22 var squares = myArray .map(x => x*x);

23

24 // Output the new array

25 console .log(squares); // Output : [1, 4, 9, 16]

26

27 // Use the filter () method to create a new array with only the even

elements in the original array

28 var evens = myArray . filter (x => x % 2 === 0);

29

30 // Output the new array

31 console .log(evens); // Output : [2, 4]

32

33 // Use the reduce () method to sum all of the elements in the

original array

34 var sum = myArray . reduce ((total , current) => total + current);

35

36 // Output the sum

37 console .log(sum); // Output : 10

38

39 // Use the sort () method to sort the elements in the original array

in ascending order

40 myArray .sort ((a, b) => a - b);

1.2. JAVASCRIPT FUNDAMENTALS 15

41

42 // Output the sorted array

43 console .log(myArray); // Output : [1, 2, 3, 4]

44

45 // Use the reverse () method to reverse the order of the elements in

the original array

46 myArray . reverse ();

47

48 // Output the reversed array

49 console .log(myArray); // Output : [4, 3, 2, 1]

Listing 1.4: Javascript array example

Here is an example of using the reduce() function to reduce an array of objects in

JavaScript:

1 const data = [

2 {

3 name: "John Doe",

4 age: 34,

5 city: "New York"

6 },

7 {

8 name: "Jane Smith",

9 age: 29,

10 city: "Los Angeles "

11 },

12 {

13 name: "Bob Johnson ",

14 age: 42,

15 city: " Chicago "

16 }

17];

1.2. JAVASCRIPT FUNDAMENTALS 16

18

19 const totalAge = data. reduce ((total , person) => {

20 return total + person .age;

21 }, 0);

22

23 console .log(totalAge); // Output : 105

Listing 1.5: Example of reducing an array in javascript

In this example, we have an array of objects representing people, with each object

containing a name, age, and city. We use the reduce() function to iterate over the

array of objects and calculate the total age of all the people. The reduce() function

takes a callback function and an initial value (in this case, 0) as arguments, and

applies the callback function to each element in the array. In this case, the callback

function adds the age property of each person object to the total variable, which is

initially set to 0. The final result of the reduce() function is the total age of all the

people in the array.

This is just one example of how the reduce() function can be used to reduce an array

of objects in JavaScript. The specific implementation will depend on the data you

are working with and the calculation you want to perform.

1.2.3 Control Flow in Javascript

Control flow is a fundamental concept in programming that involves specifying the

order in which different parts of a program are executed. In JavaScript, control flow

is typically implemented using control flow statements such as if...else, switch, for,

and while loops.

Control flow is important because it allows you to create programs that can make

decisions and execute different code based on certain conditions. This is essen-

1.2. JAVASCRIPT FUNDAMENTALS 17

tial for creating programs that can adapt to different inputs and scenarios, and for

performing complex tasks that require multiple steps or iterations.

Here are a few examples of why you might use control flow in JavaScript:

1. To check the value of a variable and execute different code depending on its

value. For example, you might use an if...else statement to check the value of

a user’s input and respond differently depending on whether the input is valid

or not.

2. To execute the same code multiple times with different values. For example,

you might use a for loop to iterate over a list of items and perform the same

operation on each item in the list.

3. To execute code repeatedly until a certain condition is met. For example, you

might use a while loop to keep checking the value of a variable until it reaches

a certain threshold, at which point the loop will stop.

Here is an example of using a switch statement in JavaScript:

1 const day = " Saturday ";

2

3 switch (day) {

4 case " Monday ":

5 console .log("Today is Monday ");

6 break;

7 case " Tuesday ":

8 console .log("Today is Tuesday ");

9 break;

10 case " Wednesday ":

11 console .log("Today is Wednesday ");

12 break;

1.2. JAVASCRIPT FUNDAMENTALS 18

13 case " Thursday ":

14 console .log("Today is Thursday ");

15 break;

16 case " Friday ":

17 console .log("Today is Friday ");

18 break;

19 case " Saturday ":

20 console .log("Today is Saturday ");

21 break;

22 case " Sunday ":

23 console .log("Today is Sunday ");

24 break;

25 default :

26 console .log(" Invalid day");

27 }

28

29 // Output : Today is Saturday

Listing 1.6: Example switch statement in Javascript

In this example, we have a variable day that contains the current day of the week.

We use a switch statement to check the value of day and execute different code

depending on the day of the week. The switch statement takes a value as its input

and compares it to the case labels inside the switch block. If the value matches one

of the case labels, the code associated with that case label is executed. If the value

does not match any of the case labels, the code associated with the default label is

executed (if it is present).

In this example, the value of day is "Saturday", so the code inside the case "Saturday"

block is executed and the message "Today is Saturday" is logged to the console. The

break statement at the end of each case block is used to prevent the code from "falling

1.2. JAVASCRIPT FUNDAMENTALS 19

through" to the next case block. If the break statement was not present, the code

inside all the case blocks after the matching case block would also be executed.

This is just one example of how a switch statement can be used in JavaScript. The

specific implementation will depend on your specific needs and the values you are

working with.

Here is an example of using an if...else statement in JavaScript:

1 const x = 5;

2

3 if (x > 10) {

4 console .log("x is greater than 10");

5 } else {

6 console .log("x is less than or equal to 10");

7 }

8

9 // Output : x is less than or equal to 10

Listing 1.7: Example if else statement

In this example, we have a variable x with the value 5. We use an if...else statement

to check the value of x and execute different code depending on whether x is greater

than 10 or not. The if part of the if...else statement specifies a condition (in this case,

x > 10) that is evaluated to either true or false. If the condition is true, the code

inside the if block is executed. If the condition is false, the code inside the else block

is executed.

In this example, the value of x is 5, which is less than or equal to 10, so the condition

x > 10 is false and the code inside the else block is executed. This logs the message

"x is less than or equal to 10" to the console.

This is just one example of how an if...else statement can be used in JavaScript. The

1.2. JAVASCRIPT FUNDAMENTALS 20

specific implementation will depend on your specific needs and the values you are

working with.

Here is an example of using a for loop in JavaScript:

1 const numbers = [1, 2, 3, 4, 5];

2

3 for (let i = 0; i < numbers . length ; i++) {

4 console .log(numbers [i]);

5 }

6

7 // Output :

8 // 1

9 // 2

10 // 3

11 // 4

12 // 5

Listing 1.8: Example of for loop in Javascript

In this example, we have an array of numbers called numbers. We use a for loop

to iterate over the array and print each number to the console. The for loop takes

three parts: an initialization (let i = 0), a condition (i < numbers.length), and an

update (i++). The initialization part is executed once when the loop starts, and

sets the initial value of the loop variable (i in this case). The condition is evaluated

before each iteration of the loop, and the loop continues as long as the condition is

true. The update is executed after each iteration of the loop, and is used to update

the value of the loop variable.

In this example, the initialization part sets the initial value of i to 0. The condition

part checks if i is less than the length of the numbers array (which is 5 in this case).

As long as i is less than 5, the loop will continue to run. The update part increments

1.2. JAVASCRIPT FUNDAMENTALS 21

the value of i by 1 after each iteration of the loop.

Inside the loop body, we use the current value of i as the index of the numbers array

to access and log the corresponding element to the console. In the first iteration, i

is 0, so the element at index 0 (which is 1) is logged to the console. In the second

iteration, i is 1, so the element at index 1 (which is 2) is logged to the console, and

so on.

This is just one example of how a for loop can be used in JavaScript. The specific

implementation will depend on your specific needs and the data you are working

with.

Here is an example of using a while loop in JavaScript:

1 let x = 5;

2

3 while (x > 0) {

4 console .log(x);

5 x--;

6 }

7

8 // Output :

9 // 5

10 // 4

11 // 3

12 // 2

13 // 1

Listing 1.9: Example of while loop in Javascript

In this example, we have a variable x with the initial value 5. We use a while loop

to iterate as long as x is greater than 0, and print the value of x to the console on

each iteration. The while loop takes a condition as its input (in this case, x > 0),

1.2. JAVASCRIPT FUNDAMENTALS 22

and continues to run as long as the condition is true.

Inside the loop body, we first log the current value of x to the console using con-

sole.log(). Then we use the x– statement to decrement the value of x by 1. This is

important because the value of x must change in some way on each iteration of the

loop, or the loop will run indefinitely (i.e. it will create an infinite loop).

In this example, the loop starts with x equal to 5. The condition x > 0 is true, so the

code inside the loop body is executed and the value of x (5) is logged to the console.

Then the value of x is decremented by 1, so x is now equal to 4. The condition x >

0 is still true, so the code inside the loop body is executed again and the new value

of x (4) is logged to the console. This process continues until the value of x is 0, at

which point the condition x > 0 is false and the loop stops.

This is just one example of how a while loop can be used in JavaScript. The specific

implementation will depend on your specific needs and the data you are working

with.

Overall, control flow is a crucial aspect of programming in JavaScript and other

languages. It allows you to create programs that are more flexible, adaptable,

and powerful, and is an essential tool for solving complex problems and performing

complex tasks.

1.2.4 Truthy and Falsy values

In JavaScript, a boolean value is a value that is either true or false. You can convert

a value of any other type to a boolean value using the Boolean() function.

Here is an example of how to use the Boolean() function to convert a value to a

boolean:

1 var myValue = ’hello ’;

1.2. JAVASCRIPT FUNDAMENTALS 23

2 var myBoolean = Boolean (myValue);

In this example, the string value "hello" is converted to a boolean value using the

Boolean() function. The resulting boolean value will be true, because the string

"hello" is a non-empty value.

You can also use the logical operators !, &&, and || to convert a value to a boolean.

For example, the ! operator will convert a value to false if it is true, and true if it

is false. The && and || operators will convert a value to true if it is truthy (i.e. if it

evaluates to true when used in a boolean context), and false if it is falsy (i.e. if it

evaluates to false when used in a boolean context).

Here are some examples of using the !, &&, and || operators to convert values to

booleans:

1 var myValue = ’hello ’;

2 var myBoolean1 = ! myValue ; // myBoolean1 is false

3 var myBoolean2 = myValue && true; // myBoolean2 is true

4 var myBoolean3 = myValue || false ; // myBoolean3 is true

Listing 1.10: Boolean validation

In these examples, the ! operator converts the value of myValue to false because it

is non-empty. The && operator converts the value of myValue to true because it is

truthy. And the || operator also converts the value of myValue to true because it is

truthy.

In JavaScript, a truthy value is a value that is considered to be true when used

in a boolean context. This means that if you use a truthy value in a conditional

statement, such as an if statement, the condition will evaluate to true.

Conversely, a falsy value is a value that is considered to be false when used in a

boolean context. If you use a falsy value in a conditional statement, the condition

1.3. HTML AND CSS 24

will evaluate to false.

Here are some examples of truthy and falsy values in JavaScript:

• true is a truthy value.

• false is a falsy value.

• The number 0 is a falsy value.

• The empty string ” is a falsy value.

• The null value is a falsy value.

• The undefined value is a falsy value.

In JavaScript, there are six falsy values: false, 0, ”, null, undefined, and NaN (not

a number). All other values are truthy, including non-empty strings, numbers, and

objects [2].

You can use the Boolean() function to convert a value to a boolean and determine

whether it is truthy or falsy. For example:

1 var myValue = ’hello ’;

2 var myBoolean = Boolean (myValue); // myBoolean is true

In this example, the string ’hello’ is a truthy value, so the Boolean() function returns

true when called on myValue. You can also use the logical operators !, &&, and ||

to convert a value to a boolean and determine whether it is truthy or falsy. For

example:

1.3 HTML and CSS

HTML, which stands for Hypertext Markup Language, is a language used to create

the structure and content of a web page. It is the standard markup language for

1.3. HTML AND CSS 25

creating web pages and web applications.

HTML consists of a series of elements that are used to define the different parts of

a web page, such as the text, images, headings, links, and other content. These ele-

ments are represented by tags, which are enclosed in angle brackets and typically

come in pairs, with an opening and closing tag.

For example, the <h1> tag is used to create a level 1 heading, and the <p> tag

is used to create a paragraph. The following HTML code creates a page with a

heading and a paragraph:

1 <h1 >My page </h1 >

2 <p>This is my page .</p>

Listing 1.11: Heading and Paragraph tag

HTML is typically used in conjunction with other languages, such as CSS (Cascading

Style Sheets) and JavaScript, to create the complete user interface of a web page.

These languages are used to define the look and behavior of the page, respectively.

HTML is a fundamental technology of the World Wide Web, and is supported by all

modern web browsers. It is used to create and structure the content of millions of

web pages on the internet.

There are many different HTML elements that are commonly used to create the

structure and content of a web page. Some of the most common HTML elements

are:

• <h1> - <h6>: These elements are used to create headings of different levels.

The <h1> element is the main heading of a page, and the <h6> element is

the lowest level heading.

• <p>: This element is used to create a paragraph of text.

1.3. HTML AND CSS 26

• <a>: This element is used to create a hyperlink to another web page or to a

specific location on the current page.

• : This element is used to embed an image on a web page.

• <div>: This element is used to create a container for other HTML elements,

and is often used to group elements together and apply styles to them.

• <form>: This element is used to create a form that allows users to enter data,

which can then be submitted to a server for processing.

• <input>: This element is used to create various types of input fields, such as

text boxes, checkboxes, and radio buttons, within a <form> element.

• <button>: This element is used to create a button that can be clicked by the

user to perform an action, such as submitting a form or triggering a JavaScript

function.

• <table>: This element is used to create a table to display data in a grid of

rows and columns.

• : This element is used to create an unordered list, which is a list of items

that are not presented in a specific order.

• : This element is used to create an ordered list, which is a list of items

that are presented in a specific order, such as a numbered list.

• : This element is used to create a list item within a or

element. These are just some of the many common HTML elements that are

used to create the structure and content of a web page. There are many other

1.3. HTML AND CSS 27

elements that are used for specific purposes, such as creating video or audio

players, or for adding semantic meaning to the page.

1.3.1 CSS

CSS, or Cascading Style Sheets, is a stylesheet language used for describing the

look and formatting of a document written in a markup language. It is most commonly

used to style web pages written in HTML and XHTML, but can also be used with

other markup languages like SVG.

CSS allows you to define the styles for elements in a document, such as the colors,

fonts, and layout, and apply those styles consistently across multiple pages or

elements. This makes it possible to separate the content of a document from its

formatting, allowing you to easily change the look and feel of a website without

having to modify the content of the pages.

CSS uses a set of rules, called "selectors," to apply styles to specific elements in a

document. These rules specify which elements the styles should be applied to, and

can be based on the element’s type, id, class, or other attributes.

For example, a CSS rule might look like this:

1 h1 {

2 color: blue;

3 font -size: 24px;

4 }

In this example, the h1 selector is used to apply the color and font-size styles to

all <h1> elements in the document. The styles are specified as a list of properties

and values, separated by colons, and are enclosed in curly braces.

CSS is a powerful and versatile tool for styling and formatting documents written in

markup languages. It allows you to create consistent and attractive designs for your

1.3. HTML AND CSS 28

websites, and to easily change the look and feel of those designs without modifying

the content of the pages.

In CSS, a class is a group of elements that are defined with the same style attributes.

These styles can then be applied to any element on a page by simply applying the

class to that element. This allows you to define the styles once and then use them

multiple times on different elements, rather than having to define the styles for each

element individually.

On the other hand, the global scope in CSS refers to the styles that are applied

to elements on a page by default. These styles are applied to all elements on the

page unless they are specifically overruled by other styles, such as those defined

in a class. The global scope in CSS is determined by the styles that are included

in the default stylesheet for the page, as well as any additional stylesheets that are

included in the page.

In summary, CSS classes allow you to define styles that can be applied to multiple

elements on a page, while the global scope in CSS refers to the default styles that

are applied to all elements on a page.

Inline CSS is a method of applying styles to an HTML element by using the style

attribute in the HTML markup. This attribute takes a string of CSS rules that are

applied directly to the element, rather than being defined in a separate stylesheet.

Here is an example of inline CSS:

1 <p style="color: red; font -size: 16px;">

2 This paragraph will be displayed in red and with a font size of 16

px.

3 </p>

Listing 1.12: Inline CSS

1.3. HTML AND CSS 29

In this example, the style attribute is used to apply the color and font-size styles

directly to the <p> element. The styles are specified as a string of CSS rules,

separated by semicolons.

Inline CSS has some advantages over other methods of applying styles to HTML

elements. For example, it allows you to apply styles to a single element without

having to define them in a separate stylesheet, which can be useful when you only

need to apply a small number of styles to a specific element.

However, inline CSS also has some disadvantages. Because the styles are applied

directly to the elements in the HTML markup, it can make the markup more difficult

to read and maintain. Additionally, using inline CSS means that you have to repeat

the same styles on multiple elements if you want them to have the same styling,

which can be tedious and makes it difficult to update the styles consistently across

the page.

Overall, it is generally considered better practice to define styles in a separate

stylesheet, rather than using inline CSS, unless you have a specific reason to do so.

To include a CSS file in an HTML page, you can use the link element within the

head section of your HTML page. The link element should have the rel attribute set

to "stylesheet" and the href attribute set to the URL of the CSS file.

1 <head >

2 <link rel=" stylesheet " href=" styles .css">

3 </head >

Listing 1.13: CSS stylesheet in html

In this example, the <link> element is used to link to a separate stylesheet file called

styles.css. This file contains the CSS rules that will be applied to the elements in

the HTML document.

1.3. HTML AND CSS 30

Another way to include CSS in an HTML document is to use the <style> element

in the <head> of the document, like this:

1 <head >

2 <style >

3 /* CSS rules go here */

4 </style >

5 </head >

Listing 1.14: CSS styles included html

In this example, the <style> element is used to define the CSS rules directly in the

HTML document, rather than in a separate stylesheet file. This can be useful when

you only have a small amount of CSS to include, or when you want to apply styles

that are only used in a specific page or section of the document.

Overall, the best method for including CSS in an HTML document depends on the

specific needs of your project. Using a separate stylesheet allows you to keep your

CSS rules in a separate file, which can make them easier to maintain and update.

However, using the <style> element can be useful when you only have a small

amount of CSS to include, or when you want to apply styles that are specific to a

single page or section of the document.

Once you have included your CSS file in your HTML page, the styles will be applied

to the page when it is loaded in a web browser. You can then modify the styles in

the CSS file and refresh the page to see the changes.

1 p {

2 font - family : Arial;

3 color: #333;

4 }

Listing 1.15: Heading and Paragraph tag

1.3. HTML AND CSS 31

In this example, the p selector selects all p elements on the page, and the declaration

applies the font-family and color styles to the selected elements. The font-family

style sets the font of the text to Arial, and the color style sets the color of the text

to a dark gray.

Here is an example that demonstrates the difference between CSS classes and the

global scope in CSS. Let’s say you have a page with the following elements:

1 <h1 > Heading 1</h1 >

2 <p> Paragraph 1</p>

3 <p class=" highlight ">Paragraph 2</p>

4 <p> Paragraph 3</p>

In this example, the <h1> and <p> elements are not assigned to any CSS classes,

so they will be styled according to the global scope. Let’s say the global scope

defines the following styles:

1 h1 {

2 color: blue;

3 font -size: 24px;

4 }

5

6 p {

7 color: black;

8 font -size: 16px;

9 }

In this case, the <h1> element will be displayed in blue and with a font size of

24px, and the <p> elements will be displayed in black and with a font size of 16px.

Now, let’s say you have defined a CSS class called highlight with the following

styles:

1 . highlight {

1.4. MIXING JAVASCRIPT WITH HTML 32

2 color: red;

3 font - weight : bold;

4 }

You can apply this class to the <p> element with the class="highlight" attribute,

like this:

1 <p class=" highlight ">Paragraph 2</p>

In this case, the <p> element with the highlight class will be displayed in red and

with a bold font, overriding the styles defined in the global scope. The other <p>

elements on the page will still be styled according to the global scope, so they will

be displayed in black and with a font size of 16px.

So, in this example, the CSS class highlight allows you to define a specific set of

styles that can be applied to one or more elements on the page, while the global

scope defines the default styles that are applied to all elements on the page unless

they are overruled by other styles.

CSS is a fundamental technology of the World Wide Web, and is supported by all

modern web browsers. It is used to create the visual appearance of millions of web

pages on the internet.

1.4 Mixing Javascript with HTML

Here is an example of an HTML page with a button that pops out an alert when

clicked: CSS, and JavaScript:

1 <html >

2 <head >

3 <title > Button Alert </ title >

4 </head >

1.5. LOGGING IN JAVASCRIPT 33

5 <body >

6 <button id="alert - button ">Click me </ button >

7 <script >

8 const alertButton = document . getElementById (’alert - button ’);

9 alertButton . addEventListener (’click ’, () => {

10 alert(’Button clicked !’);

11 });

12 </script >

13 </body >

14 </html >

Listing 1.16: Alert with HTML

In this example, the HTML page contains a button element with the ID alert-button.

When the user clicks the button, the addEventListener() method is used to register

a click event listener that pops up an alert using the alert() function.

When the user clicks the "Click me" button, the alert() function is called and a popup

window appears with the message "Button clicked!". The user can then click the

"OK" button to close the alert and continue using the page.

1.5 Logging in Javascript

In JavaScript, advanced logging typically refers to using more advanced features of

the console object to log information to the console. This can include using differ-

ent logging methods (such as console.warn() and console.error()), using formatting

options (such as console.table()), and using console methods to group and organize

log messages (such as console.group() and console.groupEnd()).

Here are a few examples of advanced logging in JavaScript:

• Using different logging methods: The console object in JavaScript has multiple

1.5. LOGGING IN JAVASCRIPT 34

methods for logging different types of messages to the console. For example,

you can use console.log() to log regular messages, console.warn() to log warn-

ing messages, and console.error() to log error messages. These methods have

different visual styles in the console (e.g. warning messages are yellow and

error messages are red), which can make it easier to quickly identify different

types of messages.

1 console .log(" Regular message ");

2 console .warn(" Warning message ");

3 console .error("Error message ");

Listing 1.17: Example of console.log

• Using formatting options: The console object also has methods for formatting

and displaying data in different ways. For example, you can use console.table()

to log an array of objects as a table, console.dir() to display the properties

of an object, and console.time() and console.timeEnd() to measure the time it

takes to run a piece of code. These methods can make it easier to read and

understand complex data, and can be useful for debugging and performance

analysis.

1 const data = [

2 {

3 name: "John Doe",

4 age: 34,

5 city: "New York"

6 },

7 {

8 name: "Jane Smith",

9 age: 29,

10 city: "Los Angeles "

1.5. LOGGING IN JAVASCRIPT 35

11 },

12 {

13 name: "Bob Johnson ",

14 age: 42,

15 city: " Chicago "

16 }

17];

18

19 console .table(data);

20 console .dir(data [0]);

21

22 console .time("Time");

23 // Code to measure goes here

24 console . timeEnd ("Time");

Listing 1.18: Example of console table and dir

• Using grouping methods: The console object also has methods for grouping

and organizing log messages. For example, you can use console.group() and

console.groupEnd() to create a nested group of log messages that can be

expanded or collapsed in the console. This can make it easier to organize and

read large numbers of log messages, and can be useful for isolating specific

sections of your code for debugging or analysis.

1 console .group("Group 1");

2 console .log(" Message 1");

3 console .log(" Message 2");

4

5 console .group("Group 2");

6 console .log(" Message 3");

7 console .log(" Message 4");

1.5. LOGGING IN JAVASCRIPT 36

8 console . groupEnd ();

9

10 console .log(" Message 5");

11 console . groupEnd ();

Listing 1.19: Usage of console.group

In this example, we create two groups of log messages using console.group()

and console.groupEnd(). The first group has the label "Group 1" and contains

two log messages ("Message 1" and "Message 2"). The second group has the

label "Group 2" and contains two log messages ("Message 3" and "Message

4"). The second group is nested inside the first group, so it is displayed as

a sub-group in the console. The final log message ("Message 5") is not part

of any group, so it is displayed at the same level as the first group in the

console.

When you run this code and view the browser console (Chrome), you should

see the following output:

Group 1

Message 1

Message 2

Group 2

Message 3

Message 4

Message 5

You can click on the group label (e.g. "Group 1") in the console to expand

or collapse the group and show or hide the log messages inside the group.

1.5. LOGGING IN JAVASCRIPT 37

This can make it easier to read and organize large numbers of log messages,

and can be useful for isolating specific sections of your code for debugging or

analysis.

Overall using console.log() in JavaScript is important for several reasons:

• It allows you to see the output of your code as it is executed, which can be

useful for debugging and understanding how your code is working.

• It allows you to inspect and interact with the data in your code, which can be

useful for testing and verifying that your code is working as expected.

• It allows you to log messages, warnings, and errors to the console, which can

be useful for tracking the progress and status of your code.

• It allows you to measure the performance of your code, which can be useful

for identifying and optimizing bottlenecks and inefficiencies.

• In general, using console.log() (and the other console methods) is an essential

tool for any JavaScript developer. It provides valuable information and feed-

back that can help you write better, more reliable, and more efficient code.

To test your knowledge please answer the following questions

Question 1 Find the number that are greater than 10

1 const numbers = [5, 10, 15, 20, 25];

2 // find value of greaterThan10

3 // const greaterThan10 = []

4 console .log(greaterThan10); // [15, 20, 25]

See solution 1 at page 66.

1.5. LOGGING IN JAVASCRIPT 38

Question 2 What is the output of the following code

1 console .group(’My Group ’);

2 console .log(’This is the first log in my group ’);

3 console .log(’This is the second log in my group ’);

4 console . groupEnd ();

You should be able to view the output in your browser console.

See solution 1 at page 67.

39

2.1. INTRODUCTION TO PROMISES 402. Asynchronous Program-
ming

The only way to learn a new

programming language is by

writing programs in it

— Dennis Ritchie

Asynchronous programming in JavaScript refers to the concept of non-blocking I/O

operations. This means that when an asynchronous operation is performed, the

program continues to execute the next instruction without waiting for the asyn-

chronous operation to complete. This can be achieved using callbacks, promises,

and async/await.

2.1 Introduction to Promises

A JavaScript promise is an object that represents the eventual result of an asyn-

chronous operation. A promise can be in one of three states: fulfilled, rejected, or

pending. A fulfilled promise means that the asynchronous operation has completed

successfully and a value is available. A rejected promise means that the asyn-

chronous operation has failed and an error is available. A pending promise means

that the asynchronous operation is still in progress.

2.1. INTRODUCTION TO PROMISES 41

Promises are a better alternative to callback functions for handling asynchronous

operations in JavaScript, because they make it easier to write and maintain code that

uses asynchronous operations. Promises provide a cleaner and more intuitive syntax

for working with asynchronous operations, and they can be composed together to

create complex asynchronous behavior.

Why use promises Callback hell is a term used to describe the problem of deeply

nested callback functions in JavaScript code. This can make the code difficult to read

and maintain, and can lead to problems with the execution order of the asynchronous

operations. To avoid callback hell, it is recommended to use the async/await syntax

introduced in ES2017, or to use promises and the Promise.then() method.

Here is an example of using promises in JavaScript:

1 const myPromise = new Promise ((resolve , reject) => {

2 // do something asynchronous

3 if (/* asynchronous operation was successful */) {

4 resolve (/* result of the asynchronous operation */);

5 } else {

6 reject (/* error occurred during the asynchronous operation */);

7 }

8 });

9

10 myPromise

11 .then ((result) => {

12 // do something with the result of the promise

13 })

14 . catch ((error) => {

15 // handle any error that occurred during the promise

2.2. HTTP REQUESTS 42

16 });

Listing 2.1: Example of promises

In the example above, the myPromise object is created with a function that performs

an asynchronous operation. The function takes two arguments, resolve and reject,

which are used to signal the completion or failure of the asynchronous operation.

The then() method is used to specify a callback function that is called when the

promise is fulfilled (i.e., the asynchronous operation is successful), and the catch()

method is used to specify a callback function that is called if the promise is rejected

(i.e., an error occurred during the asynchronous operation).

// usage of promise

2.2 Http Requests

HTTP, or Hypertext Transfer Protocol, is a networking protocol that is used to trans-

fer data on the web. HTTP requests are messages sent by a client, such as a web

browser, to a server to request information or perform actions. The server then

responds to the request with an HTTP response message.

There are several different types of HTTP requests, each of which is used for a

specific purpose. The most common types of HTTP requests are:

• GET: A GET request is used to retrieve data from a server. This type of request

is typically used to retrieve a web page or other resource from a server.

• POST: A POST request is used to send data to a server for processing. This

type of request is typically used when a user submits a form on a web page,

and the data from the form is sent to the server for processing.

2.2. HTTP REQUESTS 43

• PUT: A PUT request is used to update a resource on a server. This type of

request is typically used to update an existing web page or other resource on

a server.

• DELETE: A DELETE request is used to delete a resource on a server. This

type of request is typically used to remove a web page or other resource from

a server.

These are the most common types of HTTP requests, but there are many other types

of requests that can be used for different purposes. HTTP requests are an important

part of how the web works, as they allow clients and servers to communicate and

exchange information.

What is an Endpoint An endpoint is a specific URL that is used to access a web

service or API. An endpoint typically specifies the location of a specific resource or

service on a server, and includes any necessary parameters or query string values.

For example, consider a web service that allows users to search for books by title.

The endpoint for this service might be something like https://example.com/books?title=harry+potter,

where https://example.com/books is the base URL for the service, and title=harry+potter

is a query string parameter that specifies the search term.

In this example, the endpoint is the full URL that is used to access the book search

service. When a client, such as a web browser, makes an HTTP request to this

endpoint, the server responds with the search results for the specified query.

Endpoints are an important part of how web services and APIs work, as they provide

a way for clients to access the specific resources or services that are offered by the

server. Endpoints typically include the base URL for the service, as well as any

necessary parameters or query string values, to specify the exact resource or action

2.2. HTTP REQUESTS 44

that is being requested.

To make an HTTP request in , you can use the object or the fetch API. Here’s an

example of how to use to make a GET request to fetch some data from a server:

1 var xhr = new XMLHttpRequest ();

2 xhr.open(’GET ’, ’https :// www. example .com/api/data ’, true);

3

4 xhr. onload = function () {

5 if (this. status == 200) {

6 var data = JSON.parse(this. response);

7 // do something with the data

8 }

9 };

10

11 xhr.send ();

Listing 2.2: How to make a HTTP request in Javascript

Here’s an example of how to use the fetch API to make the same request:

1 fetch(’https :// www. example .com/api/data ’)

2 .then(response => response .json ())

3 .then(data => {

4 // do something with the data

5 });

Listing 2.3: HTTP request using fetch

Both and fetch allow you to specify additional options such as the request headers,

and you can use them to make other types of HTTP requests such as POST, PUT,

and DELETE.

2.2. HTTP REQUESTS 45

2.2.1 Using Fetch

In JavaScript, the fetch() method is used to perform HTTP requests. It is a modern

way to make network requests to retrieve resources from a server. fetch() is similar

to other web request APIs like XMLHttpRequest (XHR).

The PokeAPI is a free and open-source API for accessing data about the Pokémon

video game series. The API provides a GraphQL endpoint that allows you to query

the API using the GraphQL language.

Here is an example of using the fetch() method to retrieve data about a Pokemon

from the PokeAPI:

1 fetch(’https :// pokeapi .co/api/v2/ pokemon /1’)

2 .then(response => response .json ())

3 .then(data => {

4 console .log(data);

5 // do something with the data here

6 });

Listing 2.4: Fetching entry from poke api

In this example, the fetch() method is used to make a GET request to the PokeAPI

to retrieve information about the Pokemon with the ID of 1, which is Bulbasaur. The

response.json() method is used to parse the response as JSON, and then the data is

logged to the console.

To use authentication headers with the fetch function in JavaScript, you can pass

an object with the headers property as the second argument to the fetch function.

The headers property should be an object that contains the key-value pairs for the

headers you want to include in the request.

For example, if you wanted to include an Authorization header with a bearer token,

2.2. HTTP REQUESTS 46

you could do something like this:

1 const headers = {

2 ’Authorization ’: ’Bearer <your -bearer -token -here >’

3 };

4

5 fetch(’https :// example .com/api/v1/data ’, { headers })

6 .then(response => response .json ())

7 .then(data => {

8 // do something with the data here

9 });

Listing 2.5: "Authroization header example with fetch

In this example, the headers object contains the Authorization header with a bearer

token. This object is passed as the second argument to the fetch function, which

includes the headers in the HTTP request.

Using the abort controller

The AbortController is a new API that allows you to abort an ongoing fetch() request.

It is typically used when you want to cancel a request if the user navigates away

from the current page, or if the user has started a new request that replaces the

previous one.

Here is an example of how to use the AbortController with the fetch() method:

1 const controller = new AbortController ();

2 const signal = controller . signal ;

3

4 fetch(’https :// pokeapi .co/api/v2/ pokemon /1’, { signal })

5 .then(response => response .json ())

6 .then(data => {

7 console .log(data);

2.2. HTTP REQUESTS 47

8 // do something with the data here

9 });

10

11 // later , if you want to cancel the request :

12 controller .abort ();

Listing 2.6: AbortController example

Fetch vs AJAX

The main difference between fetch() and AJAX (Asynchronous JavaScript and XML)

is that fetch() is a modern browser API, while AJAX is a technique used to send

HTTP requests and retrieve data from a server. AJAX is based on the older XML-

HttpRequest (XHR) API, which is supported by all modern browsers, but it has been

largely replaced by the newer fetch() API.

Here are some other key differences between fetch() and AJAX:

• fetch() uses promises, while AJAX uses callbacks. This means that fetch() is

easier to use and allows for more readable code, especially when dealing with

asynchronous operations.

• fetch() supports the streaming of data, which means that you can start pro-

cessing the data as soon as it becomes available, rather than having to wait

for the entire response to be received. AJAX does not support streaming.

• fetch() supports the use of request and response objects, which provide a more

powerful and flexible API for making web requests and handling responses.

AJAX does not have this concept.

Overall, fetch() is a more modern and powerful API for making web requests, and it

is the recommended way to perform HTTP requests in JavaScript.

2.3. OTHER WAYS TO USE FETCH 48

2.3 Other ways to use fetch

The fetch function can be used for web scraping, but it is generally not the best

option for this purpose. The fetch function is intended for making HTTP requests

and retrieving data from a server, not for extracting data from an HTML page.

There are many dedicated tools and libraries that are better suited for web scraping,

such as Puppeteer and Cheerio. These tools provide a more convenient and efficient

way to extract data from HTML pages and can be easily integrated with the fetch

function.

Here is an example of how you might use the fetch function and Cheerio to scrape

data from an HTML page:

1 fetch(’https :// example .com ’)

2 .then(response => response .text ())

3 .then(html => {

4 const $ = cheerio .load(html);

5 const data = $(’#some - element ’).text ();

6 // do something with the data here

7 });

Listing 2.7: Grabbing raw html with fetch and feeding that into a library

In this example, the fetch function is used to make a GET request to the example

website, and then the response is passed to the then callback function. The re-

sponse.text() method is used to convert the response to a string of HTML, which

is then passed to Cheerio’s load method. This creates a Cheerio object that can

be used to extract data from the HTML using jQuery like syntax. In this case, the

#some-element element is selected and its text content is extracted and stored in

the data variable. From there, you can use the data however you like.

2.3. OTHER WAYS TO USE FETCH 49

Again, this is just one example of how you might use the fetch function for web

scraping. There are many other ways to accomplish this, and the specific approach

you choose will depend on your specific needs and requirements.

2.3.1 Introduction to caching

A cache is a way of storing data so that future requests for the same data can be

served faster. One way to use a cache with the fetch function (which is used to

request data from a server) is to store the responses from fetch in a cache. Then,

when a request is made for the same data, it can be served from the cache instead

of making a new request to the server. This can improve the performance of your

application by reducing the number of requests that need to be made to the server.

When data is requested from a server, it can be stored in a cache so that future

requests for the same data can be served faster. This is because the data can be

served from the cache instead of making a new request to the server. This can

improve the performance of the application by reducing the amount of time it takes

to serve data to the user.

Caching can be especially beneficial in applications that make many requests to

the same server, or in applications that are used by a large number of users who

may be requesting the same data. In these cases, caching can reduce the load on

the server and improve the overall performance of the application.

Here is an example of using a simple cache with the fetch function:

1 // Create a cache to store the responses from fetch

2 const cache = new Map ();

3

4 // Define a function that uses fetch to request data from a server

5 function getData (url) {

2.3. OTHER WAYS TO USE FETCH 50

6 // Check if the data is already in the cache

7 if (cache.has(url)) {

8 // If it is , return the data from the cache

9 return cache.get(url);

10 } else {

11 // If it’s not in the cache , use fetch to request the data from

the server

12 return fetch(url)

13 .then(response => response .json ())

14 .then(data => {

15 // Store the data in the cache for future use

16 cache.set(url , data);

17 // Return the data

18 return data;

19 });

20 }

21 }

In this example, the getData function uses fetch to request data from a server. If the

data has been requested before, it will be served from the cache instead of making

a new request to the server. This can improve the performance of your application

by reducing the number of requests that need to be made to the server.

There are several JavaScript libraries that can be used to implement caching on the

client side. Some examples include:

• lscache: This library is a simple in-memory cache that can be used to store

data in the client’s browser. It has a simple API and can be easily integrated

into an application.

• Memoizee: This library is a simple utility that can be used to memoize (cache)

the results of expensive function calls. It can be used to improve the perfor-

2.3. OTHER WAYS TO USE FETCH 51

mance of an application by storing the results of frequently-used functions in

a cache.

• QuickLRU: This library is a simple, lightweight, and efficient LRU (Least Re-

cently Used) cache. It can be used to store data in a cache and automatically

remove the least recently used items when the cache reaches its maximum

size.

• tiny-lru: This library is a small and efficient LRU cache that can be used to

store data in a cache. It has a simple API and is easy to integrate into an

application.

These are just a few examples of JavaScript libraries that can be used to implement

caching on the client side. There are many other libraries available, and the best

one to use will depend on the specific requirements of your application.

There are more complete solutions like react-query that handle refreshing data,

updating data as well as caching it.

To test your knowledge of async programming try to answer the following questions

1. Implement a post webhook to a discord channel

2. Parse the response from the pokeapi and return the url to the sprite of the

master ball.

See page 67 for answers

52

53

3. Node

JavaScript’s global scope is like a

public toilet. You can’t avoid going

in there, but try to limit your

contact with surfaces when you do..

— Dmitry Baranovskiy

To install Node.js on Windows, follow these steps:

• Go to the Node.js website: https://nodejs.org/

• Click the "Download" button to download the latest version of Node.js for Win-

dows.

• Once the download is complete, run the installer and follow the on-screen

instructions to install Node.js on your computer.

• Once the installation is complete, open a command prompt or terminal and

type node -v to verify that Node.js was installed correctly and to see which

version you have installed.

You can also use the following instructions to install Node.js using the Chocolatey

package manager:

54

• Open a command prompt or terminal and run the following command:

choco install nodejs

• Once the installation is complete, type node -v to verify that Node.js was

installed correctly and to see which version you have installed.

Alternatively, you can use the Windows Subsystem for Linux (WSL) to install and

run Node.js on Windows. To do this, follow these steps:

• Enable the Windows Subsystem for Linux (WSL) feature on your computer.

You can do this by opening the "Turn Windows features on or off" settings,

scrolling down to the "Windows Subsystem for Linux" option, and checking the

box next to it. Click "OK" to save the changes and enable WSL.

• Once WSL is enabled, open the Microsoft Store and search for "Linux". Select a

Linux distribution, such as Ubuntu, and click "Get" to install it on your computer.

• Once the Linux distribution is installed, open a command prompt or terminal

and type wsl to launch the Linux environment.

• In the Linux environment, follow the instructions for your specific distribution

to install Node.js. For example, on Ubuntu, you can use the following command

to install the latest version of Node.js:

sudo apt-get install nodejs

Once the installation is complete, you can use the node command to run Node.js in

the Linux environment.

3.1. PACKAGE MANAGERS 55

Alternatively, you can also use a package manager like apt on Ubuntu or brew

on macOS to install Node.js. For example, on Ubuntu, you can use the following

commands:

sudo apt update

sudo apt install nodejs

On macOS, you can use the following commands:

brew update

brew install node

These methods can provide additional benefits, such as automatic installation of

dependencies and easier updates. Consult the documentation for your package

manager for more information.

3.1 Package Managers

npm and Yarn are package managers for JavaScript. They are used to manage the

dependencies (libraries and tools) that are required by a JavaScript project.

npm (short for Node Package Manager) is the default package manager for the

JavaScript runtime environment Node.js. It is included with every Node.js instal-

lation, and is used to install and manage the packages (libraries and tools) that

are required by a Node.js project. npm uses a registry (a database of available

packages) to manage the packages that are available for download and installation.

Yarn is an alternative package manager for JavaScript that was developed by Face-

book. It was created to address some of the limitations and challenges of using

npm, such as slow installation times and difficulties managing multiple versions of

3.1. PACKAGE MANAGERS 56

a package. Like npm, Yarn uses a registry to manage the packages that are avail-

able for download and installation. It also includes a variety of features that make

it easier to manage dependencies, such as support for lockfiles and deterministic

installs.

In summary, npm and Yarn are both tools that are used to manage the dependencies

of a JavaScript project. They both use a registry to manage the available packages,

but Yarn includes additional features that make it easier to manage dependencies

and improve the performance of the installation process.

3.1.1 What is a package.json file

package.json is a file that is used in Node.js projects to define project metadata and

specify the dependencies (libraries and tools) that are required by the project. It is

typically located in the root directory of a Node.js project, and is used by the npm

(Node Package Manager) to manage the project’s dependencies.

The package.json file is a JSON (JavaScript Object Notation) file that contains a

number of properties that define the metadata and configuration of the project.

Some of the key properties of the package.json file include:

• name: The name of the project.

• version: The version of the project.

• scripts: A set of scripts that can be run using the npm run or yarn run command.

For example, a start script might be defined to run the main entry point of the

project.

• dependencies: A list of the dependencies (libraries and tools) that are required

by the project. These dependencies will be installed when the npm install or

3.2. EXPRESS 57

yarn install command is run.

• devDependencies: A list of the development dependencies (libraries and tools)

that are required by the project, but are only needed in development (not in

production). These dependencies will be installed when the npm install or

yarn install command is run with the –dev flag.

In summary, the package.json file is a key file in a Node.js project. It defines the

metadata and dependencies of the project, and is used by npm and Yarn to manage

the project’s dependencies.

3.2 Express

Express is a popular web application framework for building back-end applications

with Node.js. It provides a simple and flexible way to create web servers and web

applications, and includes a variety of features and tools that make it easier to

develop and maintain back-end applications.

Some of the key features of Express include:

• A simple, lightweight, and flexible core that makes it easy to build web appli-

cations A routing system that allows you to define different routes for different

HTTP methods and URLs

• Middleware support, which allows you to define functions that are executed

before or after a request is handled by a route Built-in support for rendering

HTML templates using popular template engines like Pug and EJS

• A large ecosystem of third-party libraries and plugins that can be easily in-

tegrated into Express applications.

3.2. EXPRESS 58

• Express is widely used for building back-end applications because of its sim-

plicity, flexibility, and rich feature set. It provides a solid foundation for build-

ing scalable and maintainable back-end applications with Node.js.

Here is an example of a simple Express server:

• In order to test save the file to app.js

• use yarn add express or npm install express, this should create a package.json

file to track dependencies.

• run node app.js

1 const express = require (" express ");

2

3 const app = express ();

4

5 app.get("/", (req , res) => {

6 res.send("Hello , world!");

7 });

8

9 app. listen (3000 , () => {

10 console .log(" Server listening on port 3000");

11 });

Listing 3.1: Simple Express Server

In this example, the Express app is created using the express function, and a route

is defined for the / path that sends the string "Hello, world!" as a response. The app

is then set to listen for incoming requests on port 3000. When a request is received

on the / path, the specified response will be sent back to the client.

3.2. EXPRESS 59

To add a start command to the package.json file that will run the app.js file, you can

add a scripts property to the package.json file, and specify the start command as

follows:

1 {

2 "name": "my -node -app",

3 " version ": "1.0.0",

4 " scripts ": {

5 "start": "node app.js"

6 },

7 " dependencies ": {

8 // Dependencies go here

9 " express ": " ^5.0.0 "

10 }

11 }

In this example, the scripts property is added to the package.json file, and the start

command is defined as node app.js. This means that when the start script is run (for

example, by running npm start or yarn start), the app.js file will be executed using

the node command.

Once the scripts property has been added to the package.json file, you can run the

start script by using the npm run or yarn run command, followed by the name of

the script. For example, to run the start script with npm, you can run the following

command:

npm run start

To create an Express server that hosts static files, you can use the express.static

middleware function. This function is part of the Express framework, which is a

popular web application framework for Node.js.

3.2. EXPRESS 60

Here is an example of how to use the express.static middleware to host static files:

1 const express = require (’express ’);

2 const app = express ();

3

4 app.use(express . static (’public ’));

5

6 app. listen (3000 , () => {

7 console .log(’Server listening on port 3000 ’);

8 });

Listing 3.2: Static files in express

In this example, the express.static middleware is used to serve all files in the public

directory. This means that any file in the public directory can be accessed by a

client by requesting the file’s path relative to the public directory. For example, if

there is a file named index.html in the public directory, a client can access it by

making a request to http://your-server-domain/index.html.

You can also specify a different directory to serve static files from by passing the

directory path as an argument to the express.static function. For example:

1 app.use(express . static (’my -static -files ’));

This will serve all files in the my-static-files directory.

It’s important to note that the express.static middleware only serves static files. It

does not handle dynamic requests, such as those made with a form or an AJAX

request. To handle dynamic requests, you will need to use additional middleware

or route handlers.

3.3. DOCKER 61

3.3 Docker

Docker is a popular platform for building, deploying, and running applications in

containers. A container is a lightweight, standalone, and executable package of an

application that includes everything the application needs to run, such as the code,

libraries, and dependencies.

Containers provide a number of benefits over traditional approaches to building and

deploying applications, such as virtual machines. Some of the key benefits of using

Docker and containers include:

• Portability: Containers are isolated from the host system and can run on any

machine that has Docker installed, regardless of the host operating system or

system configuration. This makes it easy to deploy and run applications on

different environments, such as local development, staging, and production.

• Consistency: Containers provide a consistent and predictable runtime envi-

ronment for applications, which helps to ensure that applications will behave

the same way no matter where they are deployed. This can reduce the time

and effort required to troubleshoot issues and ensure that applications are

working as expected.

• Scalability: Containers are lightweight and can be easily scaled up or down

to meet the changing needs of an application. This makes it easy to manage

the resources that an application uses, and allows applications to be quickly

and easily adapted to handle changes in workload or traffic.

• Efficiency: Containers use less resources than traditional virtual machines,

which makes it possible to run more applications on the same hardware. This

3.3. DOCKER 62

can help to reduce the cost and complexity of running and managing applica-

tions, and can improve the overall efficiency of an application’s infrastructure.

In summary, Docker is a platform for building, deploying, and running applications

in containers. Containers provide a number of benefits over traditional approaches,

such as portability, consistency, scalability, and efficiency. This makes Docker a

useful tool for building and deploying modern applications.

Here is an example of a Dockerfile that can be used to create a Docker image for

a simple Express server:

1

2 Copy code

3 # Use the official Node.js 10 LTS image as the base image

4 FROM node :10- lts

5

6 # Create a directory for the application

7 RUN mkdir -p /usr/src/app

8

9 # Set the working directory to the application directory

10 WORKDIR /usr/src/app

11

12 # Copy the package .json and package -lock.json files to the working

directory

13 COPY package *. json ./

14

15 # Install the dependencies

16 RUN npm install

17

18 # Copy the application source code to the working directory

19 COPY . .

20

3.3. DOCKER 63

21 # Expose port 3000 so it can be accessed from the outside

22 EXPOSE 3000

23

24 # Start the Express server when the container is started

25 CMD ["npm", "start"]

Listing 3.3: Dockerfile for node application

Your file directory should look like
/

package.json
package-lock.json
app.js
Dockerfile

In this Dockerfile, the official Node.js 10 LTS image is used as the base image. The

package.json and package-lock.json files are copied to the working directory and the

dependencies are installed using npm. The application source code is then copied

to the working directory, and port 3000 is exposed so it can be accessed from the

outside. Finally, the npm start command is specified as the default command for the

container, which will start the Express server when the container is started.

To build a Docker image using this Dockerfile, you can run the following command

from the directory where the Dockerfile is located:

docker build -t my-express-app .

This will build a Docker image with the name my-express-app using the instructions

in the Dockerfile. You can then run the image as a Docker container using the

following command:

docker run -p 3000:3000 my-express-app

This will start a Docker container based on the my-express-app image, and will

3.3. DOCKER 64

map port 3000 on the host to port 3000 in the container. The Express server will

start automatically when the container is started, and you will be able to access

the server at http://localhost:3000.

To test your knowledge please answer the following questions

Question 1 Make a docker file that uses node 16-lts, install packages with yarn

and starts the server with yarn start.

See ?? for the answer.

65

66

4. Solutions to Excerises

Any application that can be written

in JavaScript will eventually be

written in JavaScript. — Jeff Atwood

Solution 1 Find the number that are greater than 10. See page 37

To filter an array for elements greater than 10 in JavaScript, you can use the Ar-

ray.prototype.filter() method. This method takes a callback function as its argument,

and returns a new array with only the elements from the original array that satisfy

the condition specified by the callback function.

Here is an example of using Array.prototype.filter() to filter an array for elements

greater than 10:

1 const numbers = [5, 10, 15, 20, 25];

2 // find value of greaterThan10

3 // const greaterThan10 = []

4 console .log(greaterThan10); // [15, 20, 25]

67

In this example, we have an array of numbers called numbers. We call the filter()

method on numbers and pass a callback function that checks if the current element

(num) is greater than 10. The filter() method will return a new array containing only

the elements from numbers that are greater than 10 (in this case, 15, 20, and 25).

The filter() method is a higher-order function, which means it takes a function as its

input and returns a new function as its output. The callback function that you pass

to filter() must take an element from the array as its input and return a Boolean.

Solution 2 See page 38 The output of the console.group is “‘ My Group This is the

first log in my group This is the second log in my group undefined “‘ I am guessing

you missed the undefined log at the end, it happens to the best of us, this is why

its important to have a compiler on hand to see what the output will be.

Solution 3 See page 51 for details

To use the fetch function to send a message to a Discord webhook, you will need to

do the following:

• Get the URL of the webhook from your Discord server settings. The URL will

look something like this:

https://discordapp.com/api/webhooks/<webhook_id>/<webhook_token>.

• Use the fetch function to send a POST request to the webhook URL. The fetch

function takes the URL of the webhook as its first argument, and an object

containing the request options (such as the HTTP method and the body of the

request) as its second argument.

• In the request options, specify the HTTP method as POST and the body of

68

the request as a JSON object containing the message you want to send to the

webhook. For example, the body of the request might look like this:

{

"content": "This is a message sent via a Discord

webhook using the fetch function."

}

• In the fetch function’s promise, handle the response from the server to ensure

that the message was sent successfully. For example, you might check the

HTTP status code of the response to make sure it is in the 200 range, which

indicates a successful response.

Here is an example of using the fetch function to send a message to a Discord

webhook:

1 // The URL of the webhook

2 const webhookUrl = "https :// discordapp .com/api/ webhooks /<

webhook_id >/< webhook_token >";

3

4 // The body of the request

5 const requestBody = {

6 " content ": "This is a message sent via a Discord webhook

using the fetch function ."

7 };

8

9 // Use fetch to send a POST request to the webhook

10 fetch(webhookUrl , {

11 method : "POST",

12 body: JSON. stringify (requestBody)

13 })

69

14 .then(response => {

15 // Check the HTTP status code of the response

16 if (response . status >= 200 && response . status < 300) {

17 console .log(" Message sent successfully !");

18 } else {

19 console .error("Error sending message :", response .

statusText);

20 }

21 })

22 . catch(error => {

23 console .error("Error sending message :", error);

24 });

Listing 4.1: Post to webhook url using fetch

In order to implement this in node you may have to install node-fetch.

Solution 4 See page 51 for the question

To use the fetch function to make a request to the PokeAPI and parse the results,

you can do the following:

• Define a function that takes the URL of the API endpoint as an argument. In

this case, the URL would be https://pokeapi.co/api/v2/item/1.

• Use the fetch function to make a GET request to the API endpoint. The fetch

function takes the URL of the endpoint as its first argument, and an object

containing the request options (such as the HTTP method and any request

headers) as its second argument.

• In the fetch function’s promise, use the json method of the response object to

parse the JSON data returned by the API. This will return a JavaScript object

70

containing the data from the API.

• Access the properties of the parsed data object to get the information you

need. For example, if you want to get the name of the item, you could access

the name property of the data object.

Here is an example of using the fetch function to make a request to the PokeAPI

and parse the results:

1 // Define a function that makes a request to the PokeAPI

2 function getItem (url) {

3 // Use fetch to make a GET request to the API endpoint

4 return fetch(url , {

5 method : "GET"

6 })

7 .then(response => {

8 // Parse the JSON data returned by the API

9 return response .json ();

10 })

11 .then(data => {

12 // Access the properties of the data object

13 console .log("Item name:", data.name);

14 console .log("Item description :", data. description);

15 // Return the data object

16 return data;

17 });

18 }

19

20 // Call the function to make the request

21 getItem ("https :// pokeapi .co/api/v2/item /1").then(data => {

22 // Do something with the data

23 console .log("Item data:", data);

71

24 });

Listing 4.2: Fetch data from Pokeapi

Afterwards we can parse the result to grab the url to the sprite for the master ball.

1 getItem ("https :// pokeapi .co/api/v2/item /1").then(data => {

2 // Do something with the data

3 console .group(" POKEAPI data")

4 console .log("Item data:", data);

5 const masterBall = data. sprites . default ;

6 console .log(" masterBall ", masterBall);

7 console . groupEnd ();

8 });

Listing 4.3: "parsing result from pokeapi

Solution 5 Here is an example of a Dockerfile that uses Node 16-LTS, installs

packages with Yarn, and starts the server with yarn start:

1 # Use the Node 16- LTS image as the base image

2 FROM node :16- lts

3

4 # Set the working directory to the app directory

5 WORKDIR /app

6

7 # Copy the package .json and yarn.lock files to the app directory

8 COPY package .json yarn.lock ./

9

10 # Install the app dependencies with Yarn

11 RUN yarn install

12

13 # Copy the rest of the app ’s source code to the app directory

72

14 COPY . .

15

16 # Expose the app ’s port

17 EXPOSE 3000

18

19 # Start the app with Yarn

20 CMD ["yarn", "start"]

This Dockerfile does the following:

• Uses the node:16-lts image as the base image

• Sets the working directory to the /app directory

• Copies the package.json and yarn.lock files to the /app directory

• Installs the app dependencies with Yarn

• Copies the rest of the app’s source code to the /app directory

• Exposes the app’s port (3000 in this example)

• Starts the app with yarn start

Once you have created this Dockerfile, you can build a Docker image by running

the docker build command and specifying the path to the Dockerfile. For example:

docker build -t my-app .

This will create a Docker image named my-app based on the instructions in the

Dockerfile. You can then run this image as a container using the docker run com-

mand: See page 64 for the question

Code Snippets

1.1 sample script tag . 5

1.2 sample function . 7

1.3 Dot notiation in javascript . 10

1.4 Javascript array example . 13

1.5 Example of reducing an array in javascript 15

1.6 Example switch statement in Javascript . 17

1.7 Example if else statement . 19

1.8 Example of for loop in Javascript . 20

1.9 Example of while loop in Javascript . 21

1.10 Boolean validation . 23

1.11 Heading and Paragraph tag . 25

1.12 Inline CSS . 28

1.13 CSS stylesheet in html . 29

1.14 CSS styles included html . 30

1.15 Heading and Paragraph tag . 30

1.16 Alert with HTML . 32

1.17 Example of console.log . 34

1.18 Example of console table and dir . 34

1.19 Usage of console.group . 35

2.1 Example of promises . 41

2.2 How to make a HTTP request in Javascript 44

73

CODE SNIPPETS 74

2.3 HTTP request using fetch . 44

2.4 Fetching entry from poke api . 45

2.5 "Authroization header example with fetch . 46

2.6 AbortController example . 46

2.7 Grabbing raw html with fetch and feeding that into a library 48

3.1 Simple Express Server . 58

3.2 Static files in express . 60

3.3 Dockerfile for node application . 62

4.1 Post to webhook url using fetch . 68

4.2 Fetch data from Pokeapi . 70

4.3 "parsing result from pokeapi . 71

Bibliography

[1] Mdn. JavaScript — Dynamic client-side scripting. 2022. url: https://developer.

mozilla.org/en-US/docs/Learn/JavaScript (visited on 11/30/2022).

[2] mdn. Glossary MDN Falsy. 2022. url: https://developer.mozilla.org/en-

US/docs/Glossary/Falsy (visited on 11/30/2022).

[3] Project Pro. 10 reasons why you should use NodeJs. 2022. url: https://www.

projectpro.io/article/10-reasons-why-you-should-use-nodejs/129

(visited on 11/30/2022).

75

https://developer.mozilla.org/en-US/docs/Learn/JavaScript
https://developer.mozilla.org/en-US/docs/Learn/JavaScript
https://developer.mozilla.org/en-US/docs/Glossary/Falsy
https://developer.mozilla.org/en-US/docs/Glossary/Falsy
https://www.projectpro.io/article/10-reasons-why-you-should-use-nodejs/129
https://www.projectpro.io/article/10-reasons-why-you-should-use-nodejs/129

Index

const, 8, 9

JavaScript, 44

let, 8

Node.js, 6

var, 8

XMLHttpRequest, 44

76

	Introduction to Javascript
	History of Javascript
	Why use Javascript
	Getting started with Javascript
	Getting started with Node.js

	Javascript Fundamentals
	Javascript Objects
	Arrays in Javascript
	Control Flow in Javascript
	Truthy and Falsy values

	HTML and CSS
	CSS

	Mixing Javascript with HTML
	Logging in Javascript

	Asynchronous Programming
	Introduction to Promises
	Http Requests
	Using Fetch

	Other ways to use fetch
	Introduction to caching

	Node
	Package Managers
	What is a package.json file

	Express
	Docker

	Solutions to Excerises

